

Reg.	No.	* *	***************************************
Name			

I Semester M.Sc. Degree (CBSS - Reg./Supple./Imp.) **Examination, October 2021** (2018 Admission Onwards) **MATHEMATICS** MAT1C04: Basic Topology

Time: 3 Hours

Max. Marks: 80

PART - A

Answer any four questions from this Part. Each question carries 4 marks.

- 1. Let X = {a, b, c}. Give an example of a collection of subsets of X which is a topology on X. Further, give an example of a collection of subsets of X which is not a topology on X.
- 2. Is int $(A \cup B) = int (A) \cup int(B)$? Justify your answer.
- 3. Describe the weak topology on R induced by the family of constant functions from \mathbb{R} to \mathbb{R} , where the co-domain has the usual topology? Justify your answer.
- 4. Let (A, \mathcal{T}_A) be a subspace of (X, \mathcal{T}) . Is a set open in (A, \mathcal{T}_A) be necessarily open in (X, T)? Justify your answer.
- 5. Prove that the closed unit interval has the fixed point property.
- 6. Is connectedness a hereditary property? Justify your answer.

PART - B

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks.

Unit - I

- 7. a) Define finite complement topology on a set X. Show that finite complement topology is a topology on X.
 - b) Let $X = \{a, b, c\}$ and $B = \{\{a, b\}, \{b, c\}, X\}$. Can B be a basis for a topology on X. Justify your answer.
 - c) Give an example of a basis B for a space X. Show that this B satisfies the conditions for a collection of sets to be a basis. P.T.O.

- 8. a) Let X be a set and S be a collection of subsets such that $X = \bigcup \{S : S \in S\}$. Prove that there is a unique topology T on X for which S is a sub basis.
 - b) Is $\mathbb R$ with finite complement topology a first countable space? Justify your answer.
 - c) Prove that every second countable space is separable.
- 9. a) Show that, in a Hausdorff space a convergent sequence has a unique limit.
 - b) Let (X, d) be a metric space, $\langle x_n \rangle$ a Cauchy sequence in X and let $A = \{x_n : n \in \mathbb{N}\}$. Prove that A is bounded.
 - c) Let (X,\mathcal{T}) be a topological space, (Y,d) a metric space, $f:X\to Y$ a function and $f_n:X\to Y$ a continuous function for each $n\in\mathbb{N}$ such that $< f_n>$ converges uniformly to f. Prove that f is continuous.

Unit - II

- 10. a) Define subspace topology on A, where A is a subset of a topological spaceX. Show that subspace topology is a topology on the subset A.
 - b) Is separability a hereditary property? Justify your answer.
 - c) Let (X, \mathcal{T}) , (Y_1, U_1) , (Y_2, U_2) be topological spaces. Prove that $f: X \to Y_1 \times Y_2$ is continuous if and only if $\pi_i \circ f$ is continuous for each i = 1, 2.
- 11. a) Let (X_1, \mathcal{T}_1) , (X_2, \mathcal{T}_2) be topological spaces and $(X_1 \times X_2, \mathcal{T})$ be the product space. Show that the product topology on $X_1 \times X_2$ is the smallest topology for which both the projections, from the product space to the factor spaces, are continuous.
 - b) Let (X_1, d_1) and (X_2, d_2) be metric spaces and let $X = X_1 \times X_2$. Prove that the product topology on X is same as the topology on X generated by the product metric.
 - c) Define weak topology. Define product topology for an arbitrary collection of topological spaces in terms of weak topology.